Finding Hamiltonian circuits in quasi-adjoint graphs

نویسندگان

  • Jacek Blazewicz
  • Marta Kasprzak
  • Benjamin Leroy-Beaulieu
  • Dominique de Werra
چکیده

This paper is motivated by a method used for DNA sequencing by hybridization presented in [Jacek Blazewicz, Marta Kasprzak, Computational complexity of isothermic DNA sequencing by hybridization, Discrete Appl. Math. 154 (5) (2006) 718–729]. This paper presents a class of digraphs: the quasi-adjoint graphs. This class includes the ones used in the paper cited above. A polynomial recognition algorithm in O(n3), as well as a polynomial algorithm in O(n2 + m2) for finding a Hamiltonian circuit in these graphs are given. Furthermore, some results about related problems such as finding a Eulerian circuit while respecting some forbidden transitions (a path with three vertices) are discussed. © 2008 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel algorithms for Hamiltonian problems on quasi-threshold graphs

In this paper we show structural and algorithmic properties on the class of quasi-threshold graphs, or QT-graphs for short, and prove necessary and sufficient conditions for a QT-graph to be Hamiltonian. Based on these properties and conditions, we construct an efficient parallel algorithm for finding a Hamiltonian cycle in a QT-graph; for an input graph on n vertices and m edges, our algorithm...

متن کامل

Geometric-Arithmetic Index of Hamiltonian Fullerenes

A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. In this paper we compute the first and the second geometric – arithmetic indices of Hamiltonian graphs. Then we apply our results to obtain some bounds for fullerene.

متن کامل

Stochastic minimax optimal control strategy for uncertain quasi-Hamiltonian systems using stochastic maximum principle

A stochastic minimax optimal control strategy for uncertain quasi-Hamiltonian systems is proposed based on the stochastic averaging method, stochastic maximum principle and stochastic differential game theory. First, the partially completed averaged Itô stochastic differential equations are derived from a given system by using the stochastic averaging method for quasi-Hamiltonian systems with u...

متن کامل

On 3-connected hamiltonian line graphs

Thomassen conjectured that every 4-connected line graph is hamiltonian. It has been proved that every 4-connected line graph of a claw-free graph, or an almost claw-free graph, or a quasi-claw-free graph, is hamiltonian. In 1998, Ainouche et al. [2] introduced the class of DCT graphs, which properly contains both the almost claw-free graphs and the quasi-claw-free graphs. Recently, Broersma and...

متن کامل

Hermitian Symplectic Spaces, von Neumann’s Extension Theory, and Scattering on Quantum Graphs

We begin with the definition of a skew-Hermitian form and the corresponding Hermitian symplectic group. We motivate these definitions with a discussion of their relevance to self-adjoint extensions of Hamiltonian operators. In doing so, we introduce the basics of von Neumann’s extension theory. Next, we develop the necessary tools from Hermitian symplectic linear algebra to study self-adjoint e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 156  شماره 

صفحات  -

تاریخ انتشار 2008